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The Hard-Sphere Order-Disorder 
Transition in the Bethe Continuum 
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We describe a search for solidlike singlet distribution functions in a system of 
hard spheres. The procedure, which is based on Widom's relation between the 
activity and the density in a nonuniform fluid, is applied to a sequence of hard- 
core lattice gases with increasingly extended interactions. When the system is 
defined on a Bethe lattice we obtain exact solutions for arbitrary external field 
and size of the hard core. This includes the limit in which the number of 
excluded neighbors goes to infinity while the lattice spacing is made to vanish. 
The study of the first few members in this family of models suggests the 
existence of an infinite sequence, beginning with the next-nearest-neighbor 
problem, of first-order sublattice ordering transitions occurring before close 
packing and at zero field. The periodic solutions for the density originate at 
bifurcation points located at uniform close packing. 
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1. I N T R O D U C T I O N  

The study of solidlike states in the hard-sphere fluid system has often taken 

the form of a search, at high packing fractions, for oscillatory behavior  in 
the equi l ibr ium density, or singlet d is t r ibut ion function p(r) (see, e.g., refs. 1 
and  2). The framework for these investigations is provided by nonl inear  

integral equat ions  which relate the density and  pair correlat ion functions of 
the system. (~'2) These equat ions always have a uniform liquid density solu- 
tion, but, because of their nonl inear i ty ,  oscillatory solutions may also 

occur. Provided these solut ions appear  at the expected mean  density of the 

solid, and  with a spatial scale of oscillation compatible  with this density, 
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they may be considered appropriate representations of the solid. According 
to the general accounts of this approach, (1'2) these calculations have 
employed one of two such equations: the lowest order integral equation in 
the BGYB hierarchy, or the Wertheim-Lovett-Mou-Buff (WLMB) 
integral equation that relates the density to the gradient of the direct pair 
correlation function c(r, r ' ) .  3 In all cases, the pair distribution p~2)(r, r'), or 
the equivalent e(r, r'), is replaced by its uniform counterpart, typically that 
predicted by the Percus-Yevick approximation. 

An indication that the nonlinear equation method is inconveniently 
sensitive to approximations is that the work on the BGYB equation finds 
such oscillatory solutions, (5'6) while that on the WLMB equation does 
not. (v'8) Moreover, the oscillatory solutions found arise by bifurcation off, 
i.e., continuously out of, the uniform liquid solution, and, as has been 
pointed out, (8) when this occurs the bifurcation point should also be a 
state where an instability (in both thermodynamic and mechanical senses) 
develops. The bifurcation points found for hard disks and spheres within 
the BYGB scheme are located at otherwise stable liquid states with den- 
sities far from close packing, where there is no apparent physical reason for 
liquid instabilities to occur. Therefore, it has been suggested (2~ that these 
solutions are an artifact of the approximations employed. This view 
appears reinforced by the encounter, by means of the same method, of a 
bifurcation point below close packing also in the hard-rod system, (5'6) a 
system known to exist only in the fluid state. Given this state of affairs, 
which has remained basically unchanged during the last 10 years, it 
appears desirable to find a way of performing the nonlinear equation 
approach, if not to the genuine hard-sphere system itself, to a not-too- 
trivial model hard-core system without incurring in approximations. 

Several years ago (9~ Widom's potential-distribution formula (1~ was 
applied to determine expressions for the equation of state of hard-core 
systems. These expressions take the form of a nonlinear equation relating 
the density p(r) to the activity 2 of the system, and constitute an alternative 
route for the search of solidlike solutions. For one-dimensional hard rods 
one obtains the exact result of Percus m) for arbitrary external field, and the 
bifurcation analysis of this yields indeed a branch point at the close-packing 
density, but the oscillatory solutions remain always confined to this den- 
sity, (9) and therefore to infinite activity and pressure p, in conformity with 
the required absence of a phase transition. For the higher-dimensional 
cases of hard disks and spheres an approximation was proposed, (9) and this 
yielded bifurcation points at the maximum possible density for the liquid 
solution, the uniform close-packing density Pucp, again a state of infinite ;t 

3 Independent derivations of this equation appeared first in refs. 3 and 4. 
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and p (a working definition for Puop is provided below). In these two cases, 
the oscillatory solutions were found to develop mean densities smaller than 
Pucp, and finite values for 2 and p, as they evolved away from the branch 
point. Presumably, the solidlike solutions, if maintained over a range of 
densities, may at some state meet the requirements for coexistence with 
another state belonging to the liquid branch of the free energy. This 
analysis was not performed, since the approximation was introduced at the 
level of the equation of state and the free energy density functional was not 
definable. In all cases, in one and higher dimensions, the branch points 
were also points of instability with a simple physical interpretation. Hard- 
core exclusions do not obstruct periodic spatial configurations with 
wavelength equal to the hard-core size when the uniform system is brought 
to close packing. There, the response, mechanical or thermodynamic, to 
external fields that favor spatial density modulations increases without 
bound. The instability is signaled by the divergence of the structure factor 
at infinite pressure and activity. 

Here we undertake the application of the above technique to hard- 
core systems defined on the Bethe lattice. Since this would represent an 
exact model calculation (an example of replacement of the original 
Hamiltonian by an infinite-dimensional model Hamiltonian), this may 
provide elements useful in the clarification of some of the issues described, 
particularly those referring to the occurrence of the instability at close 
packing and its relation with the order-disorder transition at lower den- 
sities. 

2. AN INVERSE PROBLEM A N D  A 
S T E P - B Y - S T E P  C O N S T R U C T I O N  

Widom's potential distribution theorem (1~ states that the average 

<exp[--B~,(r)])N_l=_fv...fvdrl...drN_lexp{--B~,(r)} (1) 

where O(r) is the difference in potential energy when a particle is added at 
point r and the remaining N - 1  particles are in the configuration 
(rl,..,,rN_l), equals the density p(r) divided by the activity 2 at every 
(inverse) temperature 8. For hard-core interactions the Boltzmann factor 
exp{-f l~(r )}  can only take two values, 0 and 1, and therefore the average 
in Eq. (1) represents the probability P(r) of finding enough free space 
around r to place a hard-core particle centered there. This probability 
depends, of course, on the size (and form) of the hard core, on the external 
potential, and on fl and 2. We can use Widom's formula to determine the 
equilibrium p(r) by considering first the inverse problem of constructing 



1166 Robledo and Varea 

P(r) given p(r) as the initial information, that is, finding a procedure of 
transforming the probability of finding a particle at r into the probability 
of finding a space for a particle at r. Formally, this is accomplished by 
means of an (insertion) operator q such that q p ( r ) =  P(r; p(r)). In this 
language Widom's theorem becomes an eigenvalue problem, ~ 

qp(r) = ~- 'p(r )  (2) 

Thus, the first task is to determine P(r; p(r)) for a given hard-core interac- 
tion and external potential, and then having made Eq. (2) explicit, find the 
eigenfunctions p(r) for every eigenvalue 2 1. As we shall see, P( r ;p ( r ) )  
turns out to be a nonlinear (and nonlocal) functional of p(r), so that 
we obtain a framework similar to that of the BGYB and WLMB equa- 
tions to search for solidlike oscillatory density solutions. Provided no 
approximations are introduced, Eq. (2) is equivalent to the other two, but 
in order to transform it into them, it is necessary to express P(r; p(r)) in 
terms of pair correlation functions. For  our present purposes we do not 
need to consider pair correlations, nor any approximation regarding them. 
When the system is in a uniform state the probability of encountering 
spaces for addition of particles at density p, P(p), is independent of r. We 
define the uniform close-packing density Pucp as that density for which 
P(p) = 0, and, according to Widom's formula, P(p)= 2 - ' p ,  P = 0  is a state 
of infinite activity. 

We consider now as a specific model system a lattice gas on a Bethe 
lattice with coordination number z (z can be arbitrary, but we present in 
this section detailed results only for z = 3, although in the following section 
we also include some numerical results for z = 4). Only the interior of a 
large lattice is studied and no reference is made to its boundary points. 
Particles occupy sites and exclude occupancy of other sites around them up 
to a fixed number of nearest neighbors k. In order to make reference to the 
position of any lattice site s' with respect to that of any other site s, we 
introduce the following notation. Given a site s, the z points around it form 
its first shell; further shells 2, 3 ..... n around it are formed by connecting 
z - 1 points to each point in the previous shell. A point s' located j shells 
away from s is denoted by s' = s + a 1 �9 a2 ...  a i, where the sequence of num- 
bers al - a 2 - - ' a j  determines the path with no returns that connects site s to 
site s'. In this sequence a I takes a value from 1 to z (and selects a point in 
the first shell), and a 2 to a / t a k e  values from 1 to z -  1 (and each selects 
one point in each shell). 

Nearest-Neighbor Exclusion Problem on the z =  3 Lattice. To 
solve this problem we need to find the probability P ( s ; p ( s ) ) =  
n ( s , s + l , s + 2 ,  s + 3 )  that the four sites s, s + l ,  s + 2 ,  and s + 3  are 
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unoccupied when the probability for finding a particle at s is p(s). Given 
the range of the interaction, and noticing that the removal of any bond in 
the lattice that connects nearest-neighbor sites breaks the lattice into two 
separate pieces, we have the following factorization: 

Fn s, s + s + 2 lr,(s, s + 3 q  
n(s's+l's+2's+3)=n(s) L n(-s)AL n(sS /L ~-~ j (3) 

where the functions in the rhs of Eq. (3) represent probabilities of finding 
the sites referred to in their arguments empty. The range of the interaction 
also implies that 

m(s, s + al) = p(s) (4) 

where m(s, s + al) is the probability that a particle occupies site s and site 
s + al remains empty. In all cases the following relations hold: 

n(s, s + a l ) + m ( s  , s+al)=n(s+al) and n(s)= 1 - p ( s )  (5) 

With the employment of Eqs. (4) and (5) in Eq. (3), Widom's formula in 
Eq. (2) becomes 

.~ _ l p ( S  ) = E1 - -  p ( s )  - -  p(S -~- l )] [1 -- p(s) -- p(S + 2)] [1 -- p(S) -- p(s + 3)3 

By 
neighbor problem, we obtain 

Z lp(s) = n(s, s + 1, s + 2, s + 3) 

I n((s+ 1),(s+ 1)+ 1,(s+ 1 )+2 , (s+  1)+ 3)] 
x n ( s , s+  1) / 

n((s + 2), ( s + 2 ) +  1, ( s+  2 )+  2, ( s + 2 ) +  3) 
x 

n(s, s + 2 )  

n((s + 3), ( s+  3 )+  1, ( s+  3)+  2, ( s + 3 ) + 3 )  
x n(s, s + 3) (7) 

where the functions n(s, s +  1, s + 2 ,  s +  3) and n(s, s +  1) have the same 
meaning as before and are given by 

n(s,s+l,s+2, s+3)=l-p(s)-p(s+l)-p(s+2)-p(s+3) (8a) 

and 

n(s,s+ 1)= 1 - p ( s ) - p ( s +  1) (8b) 

E1 - p(s)3 2 

(6) 

Next-Nearest-Neighbor Exclusion Problem on the z = 3  Lattice. 
following a procedure analogous to that described for the nearest- 
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kth Nearest-Neighbor Exclusion Problem on the z=3  Lattice. 
Widom's formula for higher-order neighbor exclusion leads to forms 
similar to those in Eqs. (6) and (7), and 2-1p(s) is in these cases given by 
a larger number of factors, each of which is a ratio of probabilities for 
unoccupied sets of contiguous sites. In Fig. 1 we show these sets for various 
cases, the sites enveloped by the dashed lines represent a set involved in the 
probabilities that appear in the numerators of these factors, i.e., as in 
Eq, (8a), whereas the sites joined by the heavy lines represent a set involved 
in the probabilities in the denominators of these factors, i.e., as in Eq. (8b). 
A general expression for Widom's formula when k is odd can be written as 

ln[k lp(s)] 

= l n [ 1 -  t(s)] 
[ -  

Ek + l )/2 / 
+ E E g In L j ~ O  a l . . . a j  bl 

(a) 

+ b l ' b 2 - b ( k +  1)/2)) 
- (9) 

(b) 

(c) (d) 
Fig. 1. Sets of contiguous sites whose probabilities for being unoccupied appear in Widom's 
formulas. The dashed lines enclose the points that appear in the numerators and the heavy 
lines join the points that appear in the denominators for the expressions for 2 lp(s). See the 
text. Depictions correspond to (a) fourth, (b) fifth, (c) sixth, and (d) seventh nearest-neighbor 
exclusions. 
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where 
(k + 1)/2 

t(s)-- ~ ~ n(s+c1.c2...cj) (10) 
j=0  cl ""O 

The summations in Eqs. (9) and (10) transform into integrations when the 
number of excluded shells of neighbors k goes to infinity while the lattice 
spacing is made to vanish. In deriving Eqs. (6), (7), "and (9) we made no 
reference to the external field v(s). When v(s) differs from zero, 2 in these 
equations is given by 2 = e x p { - f l [ k t - v ( s ) ] } ,  where # is the chemical 
potential. 

3. B IFURCATION POINTS A N D  O R D E R - D I S O R D E R  
T R A N S I T I O N S  

It is now straightforward to obtain the thermodynamic behavior of the 
hard-core lattice gases considered in the previous section. 

Nearest-Neighbor Problem. The equation of state for the liquid 
phase is obtained by considering the trivial solution p ( s ) = p  in Eq. (6). 
This is 

2 ~p= (1 - 2p)3 (11) 
(1 -p)~ 

and, as would be expected, the uniform close-packing density is Pucp = 1/2. 
We subdivide the Bethe lattice into two interwoven sublattices such that 
every site in one sublattice has as nearest neighbor sites from the other sub- 
lattice. Equation (6) accepts different sublattice occupation numbers pl and 
P2 provided 

2 lpl - (1-pl-p2)3 and 2 lp2-(1-p~-P2)3 (12) 
(1 - - p l )  2 (1 - - p 2 )  2 

o r  

p , ( l  --  p l )2  =,02(1 - - p 2 )  2 (13) 

According to Eq. (13), the sublattice-ordered solution originates from the 
trivial uniform solution at a bifurcation point located at p = 1/3 and 2 = 4. 
Away from this point the oscillatory solution develops amplitude (occupa- 
tion builds up in one sublattice while the other becomes gradually empty) 
and increases monotonically in mean density and activity until it reaches 
close packing, Pl = 1 and ,02----0 (or alternatively Px ~ 0  and P2---- 1) and 2 
diverges. See Fig. 2a. A free energy analysis indicates that the bifurcation 
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Fig. 2. Sublattice occupation vs. mean density for (a) first, (b) third, (c) fifth, and (d) 
seventh nearest-neighbor exclusions, respectively. The full lines represent equilibrium states 
and the dashed-dotted lines the join states where the first-order transition occurs. The number 
densities 1/3, 1/2, 1/42, and 1/150 correspond to those values for the second-order transitions, 
whereas 1/2, 1/6, 1/14, and 1/30 are the close-packing densities. 

point is indeed a point of instability (the free energy curvature vanishes) 
and that the uniform liquid beyond this density and up to Pucp = 1/2 is 
unstable (the free energy curvature is negative). Thus, we obtain a 
continuous order-disorder transition in analogy with the behavior found 
in the nearest-neighbor exclusion problem in the square, triangular, and 
honeycomb regular lattices. (12)'4 Here there is only one instability occurring 
before close packing, but, as we see below, this situation changes when the 
range of the interaction extends beyond the nearest neighbors. 

Next-Nearest-Neighbor Problem. The equation of state for the 
liquid phase is obtained by considering the trivial solution p ( s ) = p  in 
Eqs. (7) and (8). This is 

.~ lp ( 1 - 4 p )  4 
(1 - 2 p )  3 (14) 

4 See re]. 13 for the exact solution on the triangular lattice. 
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and indicates a uniform close-packing density Pucp = 1/4. In this case we 
introduce four interwoven sublattices such that each point in one sublattice 
has as nearest-neighbors one point belonging to each of the remaining 
three sublattices. We are interested in sublattice-ordered solutions in which 
three sublattices have the same occupation number Po and the fourth sub- 
lattice has a different density Px. Under this condition Eqs. (7) and (8) 
become 

(1 - p , - 3 p o )  4 (1 - p l  - 3 p o )  4 (15) 
2- 'p~  = ~ - -  p ; - -p~o)  3 and 2-~P~ = ( 1 -  p , -  p o ) ( 1 - 2 p o )  

or 

p~(1 - p ~  - p o )  2 = p0(1 - 2po) 2 (16) 

According to Eq. (16), the sublattice-ordered solution originates now from 
the trivial uniform solution at a bifurcation point located at uniform close 
packing Pucv = 1/4. This time the mean density decreases, and the activity 
2 becomes finite, when the oscillatory solution develops amplitude as it 
moves away from the branch point. See Fig. 3a. The grand potential for the 
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Fig. 3. Sublattice occupation vs. mean density for (a) second, (b) fourth, and (c) sixth 
nearest-neighbor exclusions, respectively. The full lines represent equilibrium states and the 
dashed-dotted lines the join states where the first-order transition occurs. The number 
densities l/4, 1/10, and 1/22 correspond to the close-packing densities. 
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lattice gas co (per four-site cluster, one of each sublattice) along the 
oscillatory solution is obtained by integration of Eqs. (15). This is 

where 

flf= 4(1 - Pl - 3po) ln(1 - pl - 3po) + 3po In Po + P~ In p~ 

- 3 ( 1 - p ~ - p o ) l n ( 1 - p l - p o ) -  3(1-2po)ln(1-2po ) (17b) 

and where f is the Helmholtz  free energy (per four-site cluster). The 
pressure p can be obtained by substitution of Eqs. (15) into Eqs. (17) [with 
2 = exp(/3/~)]. This is 

1 (1 - p ~ - 3 p o )  4 (18) 
/~p= - ~ l n  (1 - p , - p 0 )  3 ( 1 - 2 p o )  3 

The free energy branch for the oscillatory solution can be analyzed and 
compared  with the branch for the uniform solution P l = Po- In  Fig. 4 we 
show our  results in tip vs. /3# space. We find a first-order phase transition 
at tip= 3.559 and f i g =  3.527. There, the liquidlike solution has density 
p~ = 0.203 and the solidlike solution has sublattice densities p~ = 0.9602 and 
Po = 0.0014, which imply a mean density Ps = (P~ + 3po)/4 =0.241;  there- 

�9 / 

3 
I I I 

3 4 

Fig. 4. Pressure vs. chemical potential plot for the uniform (dashed line) and subtattice- 
ordered (solid line) solutions of the next-nearest-neighbor problem. The solidlike soIution 
originates from the liquidlike solution at a bifurcation point located at infinite p and p. 
As observed, there is a sharp reversal in the solidlike solution, so that there are three lines 
extending to infinite p and/~. 

~ = f - # ( p ~  + 3po) (17a) 

4 
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fore the change in density at the order disorder transition is about 16%. 
Our finding of a first-order transition in the next-nearest neighbor problem 
is analogous to that found via numerical calculations (14) for extended hard- 
core interactions in two-dimensional regular lattices when there is a 
uniquely defined sublattice-ordered close-packing arrangement. (15) 

In Fig. 5b we show the results for the next-nearest-neighbor exclusion 
problem for z = 4; these can be compared with those for z = 3, also shown 
in Fig. 5a. It is interesting to note that the uniform fluid branch for this 
problem on the Bethe lattice is metastable between the first-order transition 
density and uniform close packing. That is, it can be analytically continued 
at the transition point. 

Higher-Order Neighbor Exclusion Problems. In Figs. 2 and 3 we 
also show results for larger hard-core exclusion problems with z = 3. Those 

I 
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0.1 t /4  / ~  
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i / 

/ / . /" 
/ ./ 
j / 
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0 , t  ~/5 p 

(b) 
Fig. 5. Sublattice occupation vs. mean density for the next-nearest-neighbor exclusion 
problem, (a) z=  3 and (b) z=4. The drawings illustrate close packing, with black circles 
indicating occupied sites. 
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in Figs. 2b, 2c, and 2d correspond, respectively, to up to third, fifth, and 
seventh nearest-neighbor exclusion, whereas those in Figs. 3b and 3c 
correspond, respectively, to up to fourth and sixth nearest-neighbor exclu- 
sion. For odd exclusion there are two bifurcations; the first occurs before 
close packing where the uniform solution gives way to a sublattice- 
modulated phase (with half-period equal to the lattice site spacing). This 
is a second-order transition. The second bifurcation takes place at close 
packing and here a third solution (in which all but one sublattice 
occupations are equal and one sublattice becomes eventually fully occupied 
while the others get empty) originates from the sublattice-modulated phase. 
In all cases we determined a first-order transition between the second and 
third solutions. For even exclusion there are only two solutions linked by 
a first order associated to only one bifurcation occurring at close packing, 
as is the case of the next-nearest-neighbor problem. 

4. THE  D I R E C T  C O R R E L A T I O N  F U N C T I O N  A N D  
A P P R O X I M A T E  T H E O R I E S  OF FREEZING 

As mentioned above, existing theories of freezing/1/ generally assume 
that the direct correlation function in the solid can be approximated by 
that of the uniform fluid. The hard-core problems we have analyzed here 
in the Bethe lattice provide an opportunity to assess this type of 
approximation, since both the nonuniform and uniform direct correlation 
functions can be known exactly. Here we present results for next-nearest- 
neighbor exclusion only. Functional differentiation of Eq. (7) leads to the 
following expressions for the direct correlation function: 

3 4 
c 1 1 ( O ) = l - p l - p o  1 - p l - 3 p o  (19a) 

2 1 4 
c~176 -- - -  + (19b) 

1 - 2 p o  1 - p l - P 0  1-pl -3po 

1 2 
c1~ = (19c) 

1 - p l - p o  1 - p l - 3 p o  

1 2 
c~176 (19d) 

1--2po 1--p l - -3po 
and 

1 
c1~ = c~176 = (19e) 

1 - P l - 3 p o  

where the supcrindices and subindices correspond to the sublattice subdivi- 
sion employed in Eqs. (15)-(18), and the arguments for the correlation 0, 
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1, and 2 indicate, respectively, same site, nearest-neighbor sites, and next- 
nearest-neighbor sites. The form of the direct correlation function for the 
uniform solution is obtained by setting p = Pl = Po in Eqs. (19). 

The grand potential functional f2 for the nonuniform lattice gas can be 
written as 

,B~[p(s)] = ~ {p(s)[lnp(s)-l]-~o(p(s))-fl#p(s)} (20) 
S 

where (p(p(s)) is the difference in free energy between the ideal lattice gas 
and that under consideration, cp(p(s)) can be approximated as 

&p 

1 +~ ~ ~, c(s,s';p)[p(s)--p][p(s')--p] (21) 
S S' 

where c(s, s ' ;p)  is the uniform fluid direct correlation function. It is 
straightforward to solve for the uniform and the sublattice-ordered 
solutions for the next-nearest-neighbor problem associated to the grand 
potential functional f2 in Eq. (20). We obtain for the densities at the 
transition p t=  0.2248 and p, = ( P l - I - 3 P o ) / 4  = 0.2288, where Pl = 0.7039 and 
Po =0-0704. These values can be compared with the exact results given 
below Eq. (18). The change in density at the transition is now only 1.6%, 
an order of magnitude smaller than the 16% found for the exact solution 
(and which is similar to that observed experimentally in real substances). 
Also, the degree of sublattice ordering at the transition, P l - P o ,  turns out 
to be 0.634, too small compared with that for the exact solution, which is 
0.959. 
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